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* Section 1 (1541-TR 1) provides the  motivation f o r  t he  study e f f o r t s  
The and objectively discusses the  significance of the  r e s u l t s  obtained. 
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In section 3 it is shown that the problen of controlling n cozpxents 
(1 < m < n), of the state vector for an n-th order linear constant coefficient 
plant, t o  zero in finite time can be reformulated as a probleci of controlling 

a a single component. 

Section 4 shows Pontriagirfs Maximm Principle is often a sufficient 
I) condition for optimal control of linear plants. 

Section 5 develops an algorithm for compJting the time optimal control 
functions for plants represented by linear recurrence equations. Steering 
may be to convex target sets defined by quadratic forms. 

In section 6 it is shown that linear inequality phase constraints 
can be transformed into similar constraints on the control variables. 
Methods for finding controls are discussed. 

Existence of and approximations to optimal bounded phase coordiiate 
controls by use of penalty functions are discussed in section 7. 

In section 8 a maxim principle is proven for time-optimal control 
with bounded phase constraints. An existence theorem is proven. The 
problem solution is reduced to linear programming. * 

A backing-out-of-the-origin procedure for obtaining trajectories for 
time-optimal control with amplitude and rate limited control variables is 
presented in section 9. 

' 

Section 10 presents a reformulation of a time-optimal bounded phase 
coordinate problem into a standard calculus of vari ati o x  problem. 

A mathematical method for assessing the approxination of a system by 
a lower order representation is presented in sec;.;oii, 11. 

Section 12 presents a method for determination of the state of a 
flexible vehicle that does not require mode shape information. 

The quadratic penalty function criterion is applied in section 13 to 
develop a lineer control law for a flexible.rocket booster. 

In section 14 a method for feedback control synthesis for minimum load 
disturbance effects is derived. Examples are presented. 

Section 15 shows that a linear fixed gain controller for a linear 
constant coefficient plant may yield a certain type of invariance to 
disturbances. Conditions for obtaining such invariance are derived using 
the concept of conplete controllability. The drift minimum condition is 
obtained as a specific example. 
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* 

MODES OF FINITE RESPONSE TINE CONTROL* 

+ by C .  A .  Harvey 

ABSTRACT / 4 /s ’6 

A l i n e a r  autonomous system w i t h  a s i n g l e  con t ro l  v a r i a b l e  i s  

considered. There a r e ,  i n  general ,  s e v e r a l  modes of f i n i t e  response 

t i m e  c o n t r o l  f o r  such a system. The concepts of  s i n g l e  component 

r egu la t ion  and mul t ip le  component r egu la t ion  a r e  def ined .  It i s  

then  shown t h a t  a mul t ip le  component r e g u l a t i o n  problem can be 

transformed i n t o  a s i n g l e  component r e g u l a t i o n  problem. Thus i t  is 

poss ib l e  t o  express any of t he  modes o f  c o n t r o l  considered as c o n t r o l  

A dTncQ/Z 
of  a s i n g l e  inpu t ,  s i n g l e  output system. 

INTRODUCTION 

The system considered i s  represented by t h e  v e c t o r  d i f f e r e n t i a l  

e quat i on 

A ( t )  = Ax(t) + b u ( t )  

where dot  denotes d i f f e r e n t i a t i o n  wi th  r e spec t  t o  t i m e ,  t, 

x ( t )  is a column vec tor  with elements x , ( t ) , x , ( t ) ,  ..., x,(t)  

which descr ibe  the  s t a t e  of  the system, 

u ( t )  i s  a s c a l a r  cont ro l  v a r i a b l e ,  

A i s  a constant  nxn matrix, and 

b is a constant  column vec to r .  

It i s  assumed t h a t  the  system (1) is completely c o n t r o l l a b l e .  

T h i s  means t h a t  f o r  any i n i t i a l  s t a t e  of t h e  system there e x i s t s  a 

c o n t r o l  defined on a closed f i n i t e  i n t e r v a l  of t i m e  [O,T] such 

* * 
...................... 

Prepared under cont rac t  NASw-563 f o r  t h e  NASA. 
Senior  Research S c i e n t i s t ,  Minneapolis-Honeywell Regulator Company, 
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t h a t  the s t a t e  of t h e  system a r r i v e s  a t  t h e  zero s t a t e  ( x = O )  a t  

the  t i m e  T .  

and s u f f i c i e n t  condi t ion f o r  complete c o n t r o l l a b i l i t y  o f  the system 

(1) i s  t h a t  t he  vec to r s  b ,  Ab, ..., A n - l b  a r e  l i n e a r l y  independent, i.e., 

It i s  known ( re ference  3, pp. 483-484) t h a t  a necessary 
a 

a 

d e t l b ,  A b ,  ..., An-'b(# 0 

S ingle  component r egu la t ion  i s  defined a s  con t ro l  of the  system 

such t h a t  one component of t h e  s t a t e  vec to r  i s  t r a n s f e r r e d  t o  zero 

i n  a f i n i t e  t i m e  and held zero t h e r e a f t e r .  Mc l t ip l e  component 

r egu la t ion  i s  defined a s  con t ro l  of  t h e  system such t h a t  more than  

one component o f  t h e  s t a t e  vector  a r e  t r a n s f e r r e d  t o  zero i n  a f i n i t e  

time and held zero t h e r e a f t e r .  As an example of a p a r t i c u l a r  type 

0 of mul t ip le  component cont ro l  a time optimal mul t ip le  component 

r e g u l a t i o n  problem could be defined when u ( t )  i s  constrained i n  

amplitude a s  follows: f o r  any i n i t i a l  condi t ion  f i n d  a c o n t r o l  

s a t i s f y i n g  t h e  amplitude cons t r a in t  on the  i n t e r v a l  (0,0l)  such t h a t  

the components t o  be cont ro l led  a re  t r a n s f e r r e d  t o  zero i n  t h e  

minimum t i m e  such t h a t  they may b e  held a t  zero t h e r e a f t e r .  The time 

optimal s i n g l e  component regula t ion  problem was f i r s t  discussed by 

Schmidt ( re ference  5, 40-69) and was l a t e r  t r e a t e d  by Harvey and 

Lee ( r e fe rences  1, 2,,4).  

The d e f i n i t i o n s  of s i n g l e  component and mul t ip le  component 

r e g u l a t i o n  given above a r e  somewhat ambiguous and a r e  not mutually 

exc lus ive .  It i s  poss ib le  i n  some cases  t o  s t a t e  t h e  same c o n t r o l  

problem a s  a s ing le  component o r  as a mul t ip le  component r e g u l a t i o n  
# 

4 problem. For example, consider  the  system 
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8 The s i n g l e  component r egu la t ion  problem of  c o n t r o l l i n g  x1 i s  the 

same a s  t h e  mul t ip le  component regula t ion  problem of  c o n t r o l l i n g  x1 

and x2 s ince  x = x1 and a necessary condi t ion  f o r  holding x1 a t  zero 2 

i s  t h a t  x2 be held a t  zero.  Thus, whether t h i s  p a r t i c u l a r  con t ro l  

problem i s  viewed a s  a s i n g l e  or mult ip le  component r e g u l a t i o n  

problem depends on the  d e s i r e  o f  t h e  a n a l y s t .  

The following s e c t i o n  i s  devoted t o  a cons t ruc t ive  proof of  t h i s  

pape r ' s  p r i n c i p a l  r e s u l t :  
0 

Given a mul t ip le  component r egu la t ion  problem, there e x i s t s  a 

0 l i n e a r  t ransformation of t he  s t a t e  space such t h a t  t h e  given problem 

i s  a s i n g l e  component r egu la t ion  problem i n  the transformed s t a t e  

v a r i a b l e s .  

T h i s  r e s u l t  makes poss ib le  the a p p l i c a t i o n  of the  theory re- 

l a t e d  t o  time-optimal s i n g l e  component r egu la t ion  ( r e fe rences  1, 2 ,  4 ,  

5) t o  time-optimal mul t ip le  component r egu la t ion .  Also ,  t h e  r e s u l t  

al lows t h e  con t ro l  engineer  faced wi th  a mul t ip le  component 

r e g u l a t i o n  problem t o  reformulate t h e  problem a s  a s i n g l e  inpu t ,  

s i n g l e  output  problem w i t h  which he may have more f a m i l i a r i t y .  

DEVELOPDENT OF TRANSFORMATIONS 

Consider t h e  following multiple component r egu la t ion  problem 

4 for t h e  system (1). 

1 < m - < n a r e  t o  be con t ro l l ed ,  i . e . ,  given an a r b i t r a r y  i n i t i a l  

condi t ion  x(0)  = x , f ind  a control  u ( t ) ,  0 - < t ,  depending on xo, 

Suppose tha t  t h e  components x1,x2, ..., x m' 

I 
0 
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such t h a t  t h e  corresponding so lu t ion  of  (1) s a t i s f i e s  

x , ( t )  = x , ( t )  = ... = x m ( t )  = 0 f o r  t > T for some r e a l  number T e - 
which may depend on xo. 

9 
For convenience t h e  following n o t a t i o n  i s  introduced.  The 

vec to r  x w i l l  be p a r t i t i o n e d  i n t o  two vec to r s  4, and E2 with  
4 1  = (X,YX,,. . . ,xm> I and 4, = (~~+~,32:. ,xn) I where / denotes 

t ranspose .  A l s o  the  vec to r  b w i l l  be r t i t i o n e d  i n t o  two vec to r s  

B, - - (bl,b2,".,bm) 

w i l l  be p a r t i t i o n e d  i n t o  four  submatrices,  A1, A,, A3, and A4 with 

A1 = l a i J / ,  1 L i L m,  1 - < j - < m; A2 = la 

A 

m + l  - < j - < n. 

/ t 
and B, - - (bm+l,bm+2,... ,bn) . The mat r ix  A 

1 ,  1 - < i - < m, m + l  - < j - < n; ij 
= la.  I, m+l - < i - < n,  1 - < j - < m; A)+ = la idly m + l  - < i - < n,  3 13 

Then the equat ion (1) can be w r i t t e n  a s  

The f o l l o  ring theorem, which i s  el i den t  from an examination 

of  equat ion ( 2 ) ,  i s  r e a d i l y  es tab l i shed:  

THEOmM 1. If t h e  system (1) i s  completely c o n t r o l l a b l e ,  then A, 

and B, a r e  not both zero.  

PROOF: 

show t h a t  t he  vec to r  A% has zeros for i t s  f irst  m elements, with k 

a nonnegative i n t e g e r .  

Suppose t h a t  A2 and f3, a re  both zero.  Then it i s  easy t o  

Thus t h e  matr ix  Ib, A b ,  . . . , An'lb I has m 

rows o f  zeros  and hence i t s  determinant i s  zero,  a con t r ad ic t ion .  
4 

It may occur,  a s  i n  the  example c i t e d  i n  the in t roduc t ion ,  t h a t  
4 

t h e  c o n t r o l  of 4, implies  t h e  cont ro l  of  c e r t a i n  l i n e a r  combinations 

of  components of 4,. 
quirement t h a t  e , ( t )  = 0 f o r  a l l  t - > T for some t i m e , T .  

To examine t h i s  p o s s i b i l i t y ,  consider  t h e  re -  

From t h e  
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system ( 2 )  i t  i s  c l e a r  t h a t  for t - > T :  

O = A e  + F l u  2 2  (3)  

8 

If f3, = 0 then A24, = 0 f o r  t - > T.  Hence c o n t r o l  t o  the sub- 
4 

space def ined by 4, = 0 impl ies  cont ro l  t o  t h e  subspace, cl = 0, 

def ined by e, = 0 arid A2C2 = 0.  

4, t h e  l i n e a r l y  independent elements of  A2C2.  

be r e s t a t e d  with 4, and 4, ( t h e  p ro jec t ion  o f  x onto 4, = 0)  re -  

h 

5, may be obtained by ad jo in ing  t o  

The problem may then 
A A A 

p lac ing  el and E,. The matr ices  A,,A,,A3,A4 and t h e  vec to r s  p, and 

p would of course have t o  be replaced w i t h  corresponding mat r ices  

and v e c t o r s .  
2 e 

I n  case f3, # 0 it  i s  c l e a r  from (3)  t h a t  

the case when B, = 0 t h e  problem can be reformulated w i t h  x p a r t i t i o n e d  
A A 

i n t o  vec to r s  4, and 4,. These procedures may be repeated u n t i l  it i s  

found t h a t  cont ro l  to t h e  subspace 4, = 0 does not imply con t ro l  t o  

any smal le r  subspace. The number of reformulat ions i s  f i n i t e  and i s  

i n  f a c t  l e s s  than or equal t o  n-m. 

Now l e t  us  assume t h a t  the  problem s t a t e d  a t  the beginning of 

t h i s  s e c t i o n  i s  the  r e s u l t  o f  necessary reformulat ions so t h a t  c o n t r o l  

t o  t h e  subspace, el = 0 ,  does not imply con t ro l  t o  any smal le r  sub- 

space.  T h i s  hypothesis guarantees t h a t  

’ To show t h i s  suppose t h a t  p, = 0.  Then, s ince  t h e  system i s  assumed 

4 t o  be completely c o n t r o l l a b l e ,  A2 # 0 and c o n t r o l  t o  the subspace, 

4, = 0, imp l i e s  cont ro l  t o  t h e  smaller subspace, 4, = 0 and A2E, = 0, 



r 

-b - 

which c o n t r a d i c t s  our  hypothesis.  

A2 = B1B;A2 /1iBlli2, because if t h i s  were not  t h e  case c o n t r o l  t o  

the  subspace, El = 0,  would imply  con t ro l  t o  the  smal le r  subspace, 

4 ,  = 0 and ( A 2  - ~ l @ ~ A 2 / ~ ~ f 3 1 ~ i 2 ) ~ 2  = 0 which c o n t r a d i c t s  our 

hypothesis .  

Thus 8, * 0 and hence 

* 

With condi t ion  ( 4 )  es tab l i shed ,  t h e  system ( 2 )  w i l l  be t r a n s -  

formed i n t o  a p a r t i c u l a r  form, i n  which i t  i s  evident  t h a t  the  problem 

i s  a s i n g l e  component con t ro l  problem. Let z = Sx where S i s  an nxn 

matr ix  p a r t i t i o n e d  i n t o  t h e  submatrices Sl,S2,S3 and S4 i n  the same 

manner t ha t  was used i n  p a r t i t i o n i n g  A .  are 

zero mat r ices  of  appropr ia te  s i z e  and S4 i s  t h e  (n-m)th o r d e r  i d e n t i t y  

matr ix .  

denoted by Si’ and t h e  nonsingular i ty  of Si1 i s  e s t ab l i shed  i n :  

THEOREM 2.  If the  system (1) i s  completely c o n t r o l l a b l e  and ( 4 )  i s  

s a t i s f i e d ,  then Si’ i s  nonsingular,  where S1 

The mat r ices  S2 and S 3 
t 

0 
The matrix S1 i s  defined i n d i r e c t l y  by de f in ing  a mat r ix  

-1 i s  def ined a s  

The proof of t h i s  theorem w i l l  be given fol lowing the  proof o f  

theorem 3 .  P a r t i t i o n i n g  t h e  vec tor  z i n t o  m and n-m vec to r s  Cl and 

I?,,, the  t ransformation may be wr i t t en  a s  

The transformed system i s  

= S1e1,C2 = 4,. 

The mat r ix  S1 has t h e  property t h a t  SIBl i s  a u n i t  v e c t o r  wi th  i t s  

f irst  rn-1 elements zero.  From t h i s  r e s u l t  and condi t ion  ()+) it i s  

c l e a r  t h a t  the f irst  m - 1  rows of S1A2 a r e  zero and the  l a s t  row i s  
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8 

/ 
@ 1 A 2 / l l ~ l l j 2 .  

the f i r s t  column i s  a vec to r  c and a l l  o t h e r  elements a r e  z e r o .  

The matr ix  SIAISyl has ones on the super  diagonal ,  

9 
The elements ci s a t i s f y  

m 
A1 = C CIAl 

i=1 
m m - i  

-1 These p r o p e r t i e s  of  S1@, and SIAISl 

proof of  theorem 2. 

w i l l  be v e r i f i e d  fol lowing the 

From t h e  form of (5)  it i s  easy t o  establish: 

TITEOREM 3. Regulation of z1 ( the  f irst  component of  z )  i s  equiva len t  

t o  t he  r egu la t ion  of cl. 
PROOF: Clear ly ,  r egu la t ion  o f  c1 implies  r egu la t ion  of  zl. From 

- - ckzl, k = 1 , 2 ,  ..., m - 1 .  Therefore (51, 'k+l - z'x 

(3 1 k-1 
( k )  - c c 

k - j  '1 = z1 
'k+l j=o 

where z1 ( j )  denotes t h e  jth t i m e  d e r i v a t i v e  of  zl. Thus cl can be 

expressed i n  terms of  z1 and its f i r s t  n-1 d e r i v a t i v e s  and hence 

r e g u l a t i o n  of  z1 impl ies  r egu la t ion  of cl. 
PROOF OF THEOREM 2 .  From t h e  condi t ion  ( 4 )  it i s  c l e a r  t h a t  

and y 
23 

A2@ is a mul t ip le  o f  p1 f o r  any n-m v e c t o r  f3. 

denote m and n-m vec to r s  r e spec t ive ly  such t h a t  

L e t  y Ll 

? y2 j  j 
By induct ion  i t  can be shown t h a t  

where Ak i s  a s c a l a r  f o r  k=O,l,. . ., j, A. = 1 and A2~/2k=hk+l@l. 
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det 

f 

y10 Y11 Yln i 

720 721 Y2n 1 1 . Using ( 6 ) ,  the Cayley- 

Denoting the matrix I f31,A1/31,...9A1 m-1 P l l  by M and the matrix 

lb, Ab,. . . ,An-lb/ by N, the determinant of N may be written as: 

Hamilton theorem and the elementary properties of determinants, this 

determinant may be written as 

I M 0 I 
where 0 is the mx(n-m) matrix d e t l  P Q 

o f  zeros. 

determinants o f  M and Q. 

the system (1) is assumed t o  be completely controllable and hence 

the determinant of  M is nonzero. But the determinant of M is the 

determinant of  SY1, so that Si1 is nonsingular. 

the proof of theorem 2. 

Thus the determinant of N is the product of the 

The determinant of N is non zero since ’ 
This completes 

The following notation is introduced t o  facilitate the 

verification of the properties of SIP, and SIAIST1. 

the m-vector with last element one and all other elements zero. 

Let C denote the m matrix with the vector c for its first column 

ones on the superdiagonal and all other elements zero. The 
j m 

elemen.t$ ci satisfy the equation A: = C 

definition of SY1, it is clear that Sile = P, since /3, is the last 

column of SY1. From theorem 2, SYl is nonsingular and its inverse 

Let e denote 

d 

ciAy-i. Recalling the 
i=l 

4 

is denoted by S1. Hence, e = S S -1 e = SIP, which is the desired 

Similarly, if it can be verified that AIS;l = S1 -1 C, then 
‘! 1 1  

result. 

SIAISY1 = C which is the desired r e s u l t .  But, clearly 
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AISi’ =IA!$31,A1 m - 1  P,, . . .,A;B1,AIP1l. 
Si1C, it can be seen t h a t  

Upon examining the  product 

r 

The v e c t o r  c i s  defined s o  t h a t  the  f irst  columns a r e  i d e n t i c a l .  

Thus i t  i s  es t ab l i shed  t h a t  A1Sy1 = S1 C. -1 

RENARKS 

I f  Cl is t o  be held zero a f t e r  the response t i m e  T i t  is c l e a r  

from (5)  t h a t  for t T: 

u ( t >  = - P: A ~ c ~ ( ~ ) / I ~ P ~ I I ~  b 

I) 
and 

If t h e  con t ro l  u ( t )  is required t o  s a t i s f y  the c o n s t r a i n t  

( u ( t ) l  - < 1 f o r  a l l  t ,  i t  i s  necessary t o  consider  u ( t )  given by (7 )  

and (8)  wi th  f 2 ( T )  being the  i n i t i a l  condi t ion  f o r  (8 ) .  S a t i s f y i n g  

the c o n s t r a i n t  imposes cons t r a in t s  on t h e  i n i t i a l  condi t ion <,(T). 

It may occur  t h a t  some cons t r a in t s  a r e  of t h e  form q t2 (T)  = 0 

where 9 i s  a constant  n-m vec tor .  I n  t h i s  case the con t ro l  o f  f, 

implies the  con t ro l  t o  t h e  subspace, Cl = 0, 

problem may then  be reformulated t o  be c o n t r o l  t o  t h i s  subspace. 

= 0, and the 

CONCLUSIONS 

It has been shown tha t  mult iple  component r egu la t ion  problems 
f 

can be transformed i n t o  s i n g l e  component r egu la t ion  problems for 

l i n e a r  constant  c o e f f i c i e n t  s y s t e d w i t h  a s c a l a r  con t ro l  i n p u t .  

T h i s  permits one to view such problems as s i n g l e  inpu t ,  s i n g l e  output  

c o n t r o l  problems. The development presented i s  of a cons t ruc t ive  

t \ 
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nature so that the single output of the single component formulation 

of the regulation problem may be determined explicitly. 
I 
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